1. 



A particle of mass 0.8 kg is attached to one end of a light elastic spring, of natural length 2 m and modulus of elasticity 20 N . The other end of the spring is attached to a fixed point $O$ on a smooth plane which is inclined at an angle $\alpha$ to the horizontal, where $\tan \alpha=\frac{3}{4}$. The particle is held on the plane at a point which is 1.6 m down a line of greatest slope of the plane from $O$, as shown in the diagram. The particle is then released from rest.

Find the initial acceleration of the particle.
(Total 6 marks)
1.

HL $t=\frac{20 \times 0.4}{2}(=4)$
accept -4

$$
\begin{array}{lr}
{[m g \sin \alpha+T=m a} & \text { M1 A1 } \\
0.8 \times 0.6+4=0.8 a & \text { M1 } \\
a=10.88 \approx 10.9\left(\mathrm{~m} \mathrm{~s}^{-2}\right) & \text { A1 } \\
\quad \text { accept } 11 &
\end{array}
$$

1. Nearly all candidates could apply Hooke's Law successfully, although a few confused this law with elastic energy. Virtually all candidates then knew how to use Newton's Second Law to complete the question but many failed to realise that a spring under compression produces a thrust and is not in tension. The majority of candidates did not give their final answer to an appropriate degree of accuracy. In questions involving a numerical value of $g$, answers should be given to 2 or 3 significant figures. Despite these comments, the great majority of candidates gained at least 4 of the 6 marks available for this question.
